MODIS Science Team Meeting June 6-10, 2016, Silver Spring, MD

Near real-time monitoring of forest disturbance using MODIS data: algorithms and assessment framework

X Tang, P Olofsson, EL Bullock, S Estel, CE Woodcock

Objectives

- 1.Develop algorithms for near real-time monitoring of forest disturbance:
 - Apply prediction model to daily time series of MODIS data
 - Fuse Landsat and MODIS data to overcome inherent variability of sequential MODIS observations
- 2.Develop framework for assessment of performance of near real-time monitoring systems
- Develop prototype for operational near real-time monitoring

Base Algorithm: CCDC

- Two term harmonic model to capture the seasonality and trends in surface reflectance
- Detects change by comparing new observation to predicted value

(Zhu and Woodcock, 2014)

Algorithm 1: NRT-CCDC

- CCDC modified for MODIS data
- Daily surface reflectance products screened by view angle threshold (VZA lower than 35°)
- Change detection based on 250 m NDVI
- 500 m Green and SWIR bands used for multitemporal cloud screening

Algorithm 1: NRT-CCDC

Algorithm 2: Fusion approach

- Use swath surface reflectance (MOD09) to identify the footprint of each MODIS observation
- Use Landsat-based time series model to predict the surface reflectance of each MODIS observation
- Change detected by comparing predicted and observed surface reflectance

Algorithm 2: Fusion approach

Residual Time Series

Deforestation, Para, Brazil (P227R065)

Need for assessment framework

- Last 5 years, guidance on statistical inference matured but guidance focused on area estimation of REDD activities as stipulated by IPCC
- Assessment protocols of near real-time studies diverge: non-existent to comparison to non-probability samples, other maps, field plots, etc.
- Augment guidance for NRT: focus on disturbance events, average lag [days] of alerts and minimum disturbance patch [ha]

Sample Design

- Stratified Random Sampling
- Total sample size: 765
- Spatial assessment unit: MODIS pixels (250 m)

Stratum	Forest	1 Flags	2 Flag	3 Flag	Non-forest	Landsat	Total
Area [ha]	7,091,271	146,859	39,503	14,672	2,346,622	65,847	9,704,772
Area [Pct]	73%	1.51%	0.41%	0.15%	24%	0.68%	100%
Samples	349	75	75	75	116	75	765

Three levels of operational readiness

■ Terra-i:

- 16-day MODIS NDVI product
- Operational, updates every three months

■ NRT-CCDC:

- Daily MODIS gridded surface reflectance (view angle filtering)
- Easy to implement, operational-ready

■ Fusion:

- Daily MODIS swath surface reflectance (no filtering)
- Requires Landsat model in place
- Have the potential to detect change faster

Operational-ready product

- Result from NRT-CCDC is currently being tested
- Open source; updated daily; view on internet

Summary

■ Work completed:

- Developed 2 algorithms of near real-time monitoring
- Developed framework for assessment
- Collected reference observation for assessment

Currently working on:

 Analysing the results (What size and magnitude of change can we detect? How soon can we detect it?)

■ Future work:

- Publish both algorithms and the framework of assessment (including comparison of the three products)
- Develop operational-ready products

